



A Member of



# The Most Efficient Condenser



Substantially Reduce Your Heat Transfer Area

Save Upto 30% On Your Initial Investment

**Reduced Fouling** 



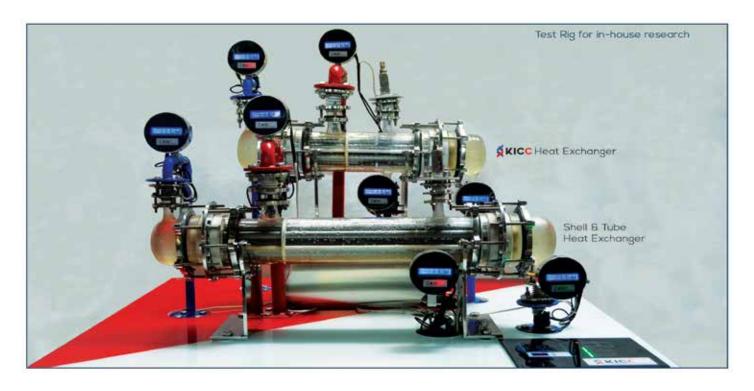


# **KICC** Technology

Corrugations are produced by indenting the tube along the length in a helical pattern with the use of special machine designed for corrugation of the tube without thinning of wall or development of stresses in the tube. The helical pattern of the corrugations and the optimal depth of the indentation causes a two regime flow in the tube side fluid, spiral at core and eddies at the periphery creating turbulence even at a lower velocity of fluid resulting in higher Heat Transfer Coefficient

#### KICC is the end-result of:

Kinam's ongoing research and development.


In-depth analysis of corrugation profiles and flow dynamics.

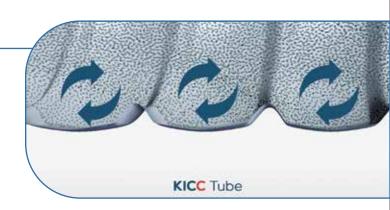
Constant testing for various condensing applications

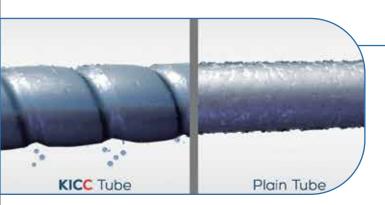
### What is New?

New and improved corrugation profile for condensers resulting in even higher heat transfer coefficient. Compact and economical design, hence higher savings.

Manufacturability in all exotic materials like Hastelloy. Titanium, Tantalum and Super Duplex Steels etc.




#### One of the test results of our extensive research had the following outcome:

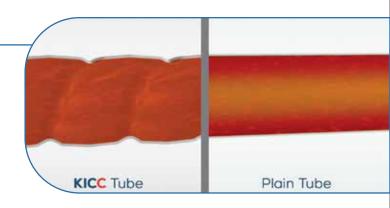

| Condenser<br>Type | Shell side flow rates |                   | Shell side Temp |                   | Cooling Water temp |        |             | NAME OF TAXABLE PARTY. | Mant Transfer Coefficient                |  |
|-------------------|-----------------------|-------------------|-----------------|-------------------|--------------------|--------|-------------|------------------------|------------------------------------------|--|
|                   | Steam<br>In           | Condensate<br>Out | Steam<br>In     | Condensate<br>Out | In                 | Out    | Tube length | No. of tubes           | Heat Transfer Coefficient<br>Kcal/h-m2-C |  |
| STHE              | 13 kg/hr              | 12.2 kg/hr        | 98.75°C         | 97.9°C            | 53.C               | 33°C   | 570mm       | 7                      | 423.8                                    |  |
| KICC              | 13.2 kg/hr            | 12.5 kg/hr        | 98.75°C         | 96.75°C           | 53,C               | 32.6°C | 300mm       | 7                      | 1.9 Times × 423.8                        |  |

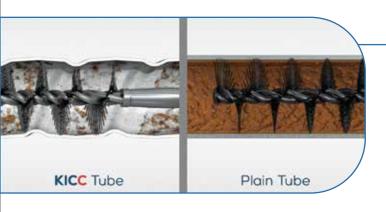
# Why KICC?

# Higher Heat Transfer Coefficient.

Turbulent flow inside the corrugated tubes due to it's helical indentation enables a more effective mixing & agitation resulting in a high heat transfer coefficient.







## **Drop Wise Condensation**

Drop wise condensation resulting in better condensation compared to thin film formation in plain tubes. The corrugation provides a channel to the condensate layer formed on the surface of tube, always providing a fresh ne surface for the vapours condense.

# **Equal Temperature Distribution**

Even temperature distribution due to flow pattern, since new layers come in contact with the tube boundary.





# Lower Fouling

Higher periphery turbulence does not allow the suspended solid particle in the tubes to settle, thus giving is a self-cleaning effect which results in reduced fouling that ensure longer running time. Easier to clean due to intermittent scaling as compared to Plain tube.

# KICC combines best advantages of PHE and STHE

|                              | Shell & Tube Heat | Exchanger  | Plate Heat Exc | hanger | KICC Tube Heat E | xchanger |
|------------------------------|-------------------|------------|----------------|--------|------------------|----------|
|                              |                   |            | 00             |        |                  |          |
| Heat Transfer Coefficient    | Low               | _          | High           | +      | High             | +        |
| Size                         | Huge              | _          | Compact        | +      | Compact          | +        |
| Temperature Distribution     | Non Uniforr       | m <b>–</b> | Uniform        | +      | Uniform          | +        |
| Fouling                      | High              | _          | Low            | +      | Low              | +        |
| High Pressure Application    | Yes               | +          | No             | _      | Yes              | +        |
| High Temperature Application | Yes               | +          | No             | _      | Yes              | +        |
| Maintenance Cost             | Low               | +          | High           | _      | Low              | +        |

# KICC series:

**KICC** series for condensing applications

**KICH** series for heating and cooling applications

**KICF** series for food processing and pasteurization applications

# **Applications:**

- Solvent Condenser
- Product Cooler
- Heat Recovery Applications
  And more
- Surface Condenser
- Feed Pre-Heater
- Process Heater

#### OFFICE:

#### Kinam Engineering Industries Private Limited

Part-01, 1st Floor, Sion Garage Building, Above Croma, Sion Koliwada, Plot No. 112, Sion, Mumbai - 400022 T: +91-22-46177689 / 022 46177688 / 022 46177687

#### FACTORY:

Plot No. M-4, MIDC, Pale Phase-III, Industrial Area, Additional Ambernath, Village - Pale, Taluka Ambernath, District - Thane 421506, India.

